Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Clin Med ; 12(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37892721

ABSTRACT

Diabetic retinopathy (DR) is one of the main complications of diabetes, and the management of the main control parameters explains only an 11% reduction in the risk of progressing to DR, leaving 89% to be explained by other factors or correlations between the usual factors that are currently unknown. The objective of this systematic review and meta-analysis is to evaluate the similarities and differences between the possible risk factors for developing DR when comparing the world to Latin American populations. The search was performed first for Latin American (LA) populations and a second search for non-Latin American (Non-LA) populations. Using the PRISMA guidelines, five articles were found to be relevant for each of the groups. The patients who had elevated systolic blood pressure (SBP) developed DR more frequently than the patients without retinopathy (Z = 2.1, p = 0.03), an effect measured in the population at a global level (GL), behavior that becomes not significant when the LA and non-LA populations are grouped separately; relevant to this is that the diagnosis of hypertension (HBP) grouped globally and stratified does not present a risk factor for DR (Z = 0.79, p = 0.42). This indicates that SBP is a risk factor for the world population and that, by separating it into different regions, the omission could cause it not to be considered a possible risk factor. In conclusion, the relationship between the increase in DR associated with the risk factors present in different populations, the limited research conducted in Latin America, and the cultural, social, economic, and genetic differences makes for a complex condition, which reflects the necessity of researching in a more integrated way.

2.
Microorganisms ; 11(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37512817

ABSTRACT

Probiotics play an important role against infectious pathogens, such as Escherichia coli (E. coli), mainly through the production of antimicrobial compounds and their immunomodulatory effect. This protection can be detected both on the live probiotic microorganisms and in their inactive forms (paraprobiotics). Probiotics may affect different cells involved in immunity, such as macrophages. Macrophages are activated through contact with microorganisms or their products (lipopolysaccharides, endotoxins or cell walls). The aim of this work was the evaluation of the effect of two probiotic bacteria (Escherichia coli Nissle 1917 and Bifidobacterium animalis subsp. lactis HN019 on macrophage cell line J774A.1 when challenged with two pathogenic strains of E. coli. Macrophage activation was revealed through the detection of reactive oxygen (ROS) and nitrogen (RNS) species by flow cytometry. The effect varied depending on the kind of probiotic preparation (immunobiotic, paraprobiotic or postbiotic) and on the strain of E. coli (enterohemorrhagic or enteropathogenic). A clear immunomodulatory effect was observed in all cases. A higher production of ROS compared with RNS was also observed.

3.
Biomedicines ; 11(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37509431

ABSTRACT

Diabetic retinopathy (DR) is the major microvascular complication of diabetes and causes vitreous traction and intraretinal hemorrhages leading to retinal detachment and total blindness. The evolution of diabetes is related to exacerbating inflammation caused by hyperglycemia and activation of inflammatory cells. Neutrophils are cells able to release structures of extracellular DNA and proteolytic enzymes called extracellular traps (NETs), which are associated with the persistence of inflammation in chronic pathologies. The purpose of the study was to determine the usefulness of neutrophil traps as indicators of DR progression in patients with type 2 diabetes (T2DM). We performed a case-control study of seventy-four cases classified into five groups (non-proliferative DR, mild, moderate, severe, and proliferative) and fifteen healthy controls. We found correlations between NETs and a diagnostic time of T2DM (r = 0.42; p < 0.0001), fasting glucose (r = 0.29; p < 0.01), glycated hemoglobin (HbA1c) (r = 0.31; p < 0.01), estimated glomerular filtration rate (eGFR) (r = -0.29; p < 0.01), and plasma osmolarity (r = 0.25; p < 0.01). These results suggest that due to NETs being associated with clinical indicators, such as HbA1c and eGFR, and that NETs are also associated with DR, clinical indicators might be explained in part through an NET-mediated inflammation process.

4.
Ophthalmic Epidemiol ; 30(4): 400-406, 2023 08.
Article in English | MEDLINE | ID: mdl-36184872

ABSTRACT

OBJECTIVE: In this study, we investigated the impact of the SARS-CoV-2 vaccination on seroprevalence in a cohort of healthcare workers (HCW) at an ophthalmic medical center. METHODS: IgG antibodies against the N, S1, and S2 antigens of SARS-CoV-2 as well as their serum neutralizing activity were determined. RESULTS: In the present study, we observed that 98.4% of HCW were seropositive for S1/S2 proteins of SARS-CoV-2 due to the national vaccination program. Interestingly, 78.4% of the participants had anti-N protein antibodies, suggesting previous COVID-19 infection. We also evaluated the neutralizing antibodies and found that the mean value was high (90.7%). CONCLUSION: These results indicate that our HCWs cohort presented a robust hybrid humoral response owing to the massive national vaccination program and natural infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Seroepidemiologic Studies , COVID-19 Vaccines , Health Personnel
5.
J Vis Exp ; (188)2022 10 14.
Article in English | MEDLINE | ID: mdl-36314811

ABSTRACT

Lumican is a small leucine-rich proteoglycan in the human amniotic membrane (AM) that promotes corneal epithelialization and the organization of collagen fibers, maintaining corneal transparency. In the present work, a method for protein extraction from AM to obtain lumican is proposed. Additionally, the stability of lumican in the AM extract (AME) stored at different temperatures and time periods is evaluated. 100 mg of AM were thawed and mechanical de-epithelialized. The de-epithelialized AM was frozen and crushed until a fine powder was obtained, which was solubilized with 2.5 mL of saline buffer with protease inhibitors and centrifuged for protein extraction. The supernatant was collected and stored at -20 °C, 4 °C, and room temperature (RT) for 6, 12, 20, and 32 days. Afterward, lumican was quantified in each AME. This technique allows an accessible and acquirable protocol for lumican extraction from AM. Lumican concentration was affected by storage time and temperature conditions. Lumican in the AME of 12 days stored at -20 °C and 4 °C was significantly higher than other AME. This lumican extraction could be useful for developing treatments and pharmaceutical solutions. Further studies are needed to determine the uses of AME lumican in re-epithelialization and wound healing process.


Subject(s)
Amnion , Wound Healing , Humans , Amnion/metabolism , Lumican/metabolism , Temperature
6.
Cells ; 11(18)2022 09 10.
Article in English | MEDLINE | ID: mdl-36139406

ABSTRACT

Human amniotic membrane mesenchymal stem cells (hAM-MSC) secrete a myriad of components with immunosuppressive activities. In the present research, we aimed to describe the effect of prostaglandin E2 (PGE2) secreted by hAM-MSCs on neutrophil extracellular trap (NET) release and to characterize the role of its receptors (EP2/EP4) in PAD-4 and NFκB activity in neutrophils. Human peripheral blood neutrophils were ionomycin-stimulated in the presence of hAM-MSC conditioned medium (CM) treated or not with the selective PGE2 inhibitor MF-63, PGE2, EP2/EP4 agonists, and the selective PAD-4 inhibitor GSK-484. NET release, PAD-4, and NFκB activation were analyzed. Ionomycin induced NET release, which was inhibited in the presence of hAM-MSC-CM, while CM from hAM-MSCs treated with MF-63 prevented NET release inhibition. PGE2 and EP2/EP4 agonists, and GSK-484 inhibited NET release. EP2/EP4 agonists and GSK-484 inhibited H3-citrullination but did not affect PAD-4 protein expression. Finally, PGE2 and EP2/EP4 agonists and GSK-484 increased NFκB phosphorylation. Taken together, these results suggest that hAM-MSC exert their immunomodulatory activities through PGE2, inhibiting NET release in a PAD-4-dependent pathway. This research proposes a new mechanism by which hAM-MSC exert their activities when modulating the innate immune response and inhibiting NET release.


Subject(s)
Extracellular Traps , Mesenchymal Stem Cells , Amnion/metabolism , Culture Media, Conditioned/pharmacology , Dinoprostone/metabolism , Dinoprostone/pharmacology , Extracellular Traps/metabolism , Humans , Ionomycin , Mesenchymal Stem Cells/metabolism , Receptors, Prostaglandin E, EP2 Subtype , Receptors, Prostaglandin E, EP4 Subtype/metabolism
7.
Ophthalmic Epidemiol ; 29(5): 483-490, 2022 10.
Article in English | MEDLINE | ID: mdl-34530684

ABSTRACT

PURPOSE: During the COVID-19 pandemic, healthcare workers (HCWs) are at a considerable risk of being infected with SARS-CoV-2; among them, HCWs from ophthalmology departments are more prone to develop severe symptoms. In Mexico City, the prevalence of SARS-CoV-2 infection among HCWs is 30%. The present work aims to describe the seroprevalence among HCWs at an Ophthalmological Reference Centre in Mexico City. METHODS: A self-report questionnaire, RT-PCR test and detection of serum IgG/IgM antibodies against SARS-CoV-2 were performed among HCWs at the Institute of Ophthalmology "Conde de Valenciana". RESULTS: A total of 169 HCWs participated in the study. None of the participants declared severe symptoms, and only 15% showed three or more symptoms. The results showed that 32% of the participants were RT-PCR+ (54/169), and 20% (35/169) presented IgG antibodies against SARS-CoV-2. Thirteen percent of the RT-PCR+ subjects were IgG positive, and 7.6% of the RT-PCR- participants were IgG positive. The presence of three or more symptoms correlated with the presence of IgG antibodies, as well as Ct values of < 32 (p < 0,05). CONCLUSION: Most of the HCW cohort showed mild symptoms, and 69% of the RT-PCR+ participants did not show IgG antibodies against SARS-CoV-2. Seroprevalence was significantly associated with the presentation of COVID-19-associated symptoms.


Subject(s)
COVID-19 , Ophthalmology , COVID-19/epidemiology , Cross-Sectional Studies , Delivery of Health Care , Health Personnel , Humans , Immunoglobulin G , Immunoglobulin M , Pandemics , SARS-CoV-2 , Seroepidemiologic Studies
8.
Int J Mol Sci ; 22(23)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34884955

ABSTRACT

Proliferative retinopathies produces an irreversible type of blindness affecting working age and pediatric population of industrialized countries. Despite the good results of anti-VEGF therapy, intraocular and systemic complications are often associated after its intravitreal use, hence novel therapeutic approaches are needed. The aim of the present study is to test the effect of the AS1411, an antiangiogenic nucleolin-binding aptamer, using in vivo, ex vivo and in vitro models of angiogenesis and propose a mechanistic insight. Our results showed that AS1411 significantly inhibited retinal neovascularization in the oxygen induced retinopathy (OIR) in vivo model, as well as inhibited branch formation in the rat aortic ex vivo assay, and, significantly reduced proliferation, cell migration and tube formation in the HUVEC in vitro model. Importantly, phosphorylated NCL protein was significantly abolished in HUVEC in the presence of AS1411 without affecting NFκB phosphorylation and -21 and 221-angiomiRs, suggesting that the antiangiogenic properties of this molecule are partially mediated by a down regulation in NCL phosphorylation. In sum, this new research further supports the NCL role in the molecular etiology of pathological angiogenesis and identifies AS1411 as a novel anti-angiogenic treatment.


Subject(s)
Aptamers, Nucleotide/administration & dosage , Oligodeoxyribonucleotides/administration & dosage , Oxygen/adverse effects , Phosphoproteins/metabolism , RNA-Binding Proteins/metabolism , Retinal Neovascularization/drug therapy , Animals , Aptamers, Nucleotide/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Intravitreal Injections , Mice , MicroRNAs/genetics , Oligodeoxyribonucleotides/pharmacology , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphorylation/drug effects , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Retinal Neovascularization/chemically induced , Retinal Neovascularization/genetics , Retinal Neovascularization/metabolism , Nucleolin
9.
Front Cell Infect Microbiol ; 11: 646054, 2021.
Article in English | MEDLINE | ID: mdl-34485167

ABSTRACT

Background: Coinfections with fungi and bacteria in ocular pathologies are increasing at an alarming rate. Two of the main etiologic agents of infections on the corneal surface, such as Aspergillus fumigatus and Staphylococcus aureus, can form a biofilm. However, mixed fungal-bacterial biofilms are rarely reported in ocular infections. The implementation of cell cultures as a study model related to biofilm microbial keratitis will allow understanding the pathogenesis in the cornea. The cornea maintains a pathogen-free ocular surface in which human limbo-corneal fibroblast cells are part of its cell regeneration process. There are no reports of biofilm formation assays on limbo-corneal fibroblasts, as well as their behavior with a polymicrobial infection. Objective: To determine the capacity of biofilm formation during this fungal-bacterial interaction on primary limbo-corneal fibroblast monolayers. Results: The biofilm on the limbo-corneal fibroblast culture was analyzed by assessing biomass production and determining metabolic activity. Furthermore, the mixed biofilm effect on this cell culture was observed with several microscopy techniques. The single and mixed biofilm was higher on the limbo-corneal fibroblast monolayer than on abiotic surfaces. The A. fumigatus biofilm on the human limbo-corneal fibroblast culture showed a considerable decrease compared to the S. aureus biofilm on the limbo-corneal fibroblast monolayer. Moreover, the mixed biofilm had a lower density than that of the single biofilm. Antibiosis between A. fumigatus and S. aureus persisted during the challenge to limbo-corneal fibroblasts, but it seems that the fungus was more effectively inhibited. Conclusion: This is the first report of mixed fungal-bacterial biofilm production and morphological characterization on the limbo-corneal fibroblast monolayer. Three antibiosis behaviors were observed between fungi, bacteria, and limbo-corneal fibroblasts. The mycophagy effect over A. fumigatus by S. aureus was exacerbated on the limbo-corneal fibroblast monolayer. During fungal-bacterial interactions, it appears that limbo-corneal fibroblasts showed some phagocytic activity, demonstrating tripartite relationships during coinfection.


Subject(s)
Aspergillus fumigatus , Staphylococcus aureus , Biofilms , Cornea , Fibroblasts , Humans
10.
Mol Vis ; 27: 370-383, 2021.
Article in English | MEDLINE | ID: mdl-34447239

ABSTRACT

Purpose: Viral infections such as herpetic keratitis (HSK) activate the innate immune response in the cornea triggering opacity and loss of vision. This condition is performed mainly by myofibroblasts that exacerbate secretion of inflammatory cytokines. Amniotic membrane transplantation (AMT) reduces ocular opacity and scarring inhibiting secretion of inflammatory cytokines and proliferation of myofibroblasts. We previously reported that the amniotic membrane (AM) favors an anti-inflammatory microenvironment inhibiting the secretion of inflammatory cytokines, expression of innate immune receptors, and translocation of nuclear NF-κB on human limbal myofibroblasts (HLMs). The aim of the present study was to determine whether the soluble factors of the AM decrease the immune response of HLMs stimulated with polyinosinic-polycytidylic acid sodium salt (poly I:C). Methods: The AM was incubated in Dulbecco's modified eagle medium (DMEM)/F12, and the supernatant was collected to obtain amniotic membrane conditioned medium (AMCM). HLMs were isolated from cadaveric sclera-corneal rims. HLMs were cultured in DMEM/F12 or AMCM and stimulated or not with poly I:C (10 µg/ml) for 12 h to analyze synthesis of CCL2, CCL5, CXCL10, MDA5, RIG-1, and TLR3 or for 2 h to analyze translocation of nuclear NF-kB, IRF3, and IRF7. The proteins contained on AMCM were analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and the acquired peptide ions were analyzed with the Mascot program using both National Center for Biotechnology Information (NCBI) and expressed sequence tag (EST) databases. Results: AMCM downregulated the mRNA levels of CCL2, CCL5, CXCL10, MDA5, RIG-1, and TLR3. In addition, AMCM decreased secretion of CCL2, CCL5, and CXCL10 and translocation of nuclear NF-κB. Interestingly, AMCM increased translocation of nuclear IRF3 and synthesis and secretion of type I IFN-ß. We also identified small leucine-rich proteoglycan lumican in the AMCM. The administration of rh-lumican to poly I:C-stimulated HLMs reduced the mRNA levels of CCL2, CCL5, and CXCL10. Conclusions: These results suggest that the AM can trigger an anti-inflammatory response on HLMs through soluble factors, and that lumican could play an important role in these effects.


Subject(s)
Amnion/physiology , Culture Media, Conditioned/pharmacology , Inflammation/prevention & control , Limbus Corneae/cytology , Myofibroblasts/drug effects , Cells, Cultured , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique, Indirect , Humans , Immunity, Innate/drug effects , Lumican/pharmacology , Myofibroblasts/metabolism , NF-kappa B/metabolism , Phosphorylation , Poly I-C/pharmacology
11.
Cells ; 10(6)2021 06 10.
Article in English | MEDLINE | ID: mdl-34200613

ABSTRACT

Aptamers are single-stranded DNA or RNA oligonucleotides that are currently used in clinical trials due to their selectivity and specificity to bind small molecules such as proteins, peptides, viral particles, vitamins, metal ions and even whole cells. Aptamers are highly specific to their targets, they are smaller than antibodies and fragment antibodies, they can be easily conjugated to multiple surfaces and ions and controllable post-production modifications can be performed. Aptamers have been therapeutically used for age-related macular degeneration, cancer, thrombosis and inflammatory diseases. The aim of this review is to highlight the therapeutic, diagnostic and prognostic possibilities associated with aptamers, focusing on eye pathological angiogenesis.


Subject(s)
Aptamers, Nucleotide/pharmacology , Eye Diseases/therapy , Molecular Targeted Therapy/methods , Neovascularization, Pathologic/therapy , Humans
12.
J Tissue Eng Regen Med ; 14(5): 714-722, 2020 05.
Article in English | MEDLINE | ID: mdl-32174033

ABSTRACT

Carpal tunnel syndrome (CTS) is the most common focal entrapment mononeuropathy, comprising medium nerve chronic inflammation and fibrosis. Although carpal tunnel release surgery (CTRS) has demonstrated to be effective, around 3% to 25% of CTRS show recurrence. Amniotic membrane transplantation (AMT) has been used in different pathologies inhibiting inflammation and fibrosis and promoting nerve repair. The aim of this study was to determine the efficacy of AMT in CTRS. The present study comprised a randomized, single-blind controlled trial to compare the 1-year follow-up outcomes of AMT in CTRS (AMT group) or CTRS alone (control group) in patients with CTS. Thirty-five patients with unilateral or bilateral CTS were enrolled, and 47 wrists were randomized into two groups: the AMT group and the control group. To compare the outcomes, three different questionnaires scores (Boston Carpal Tunnel Syndrome Questionnaire, Disabilities of the Arm, Shoulder, and Hand, and Historical-Objective scale) were used. Evaluations were assessed at baseline and at 15 days, 1, 3, 6, and 12 months after surgery. Compared with the control group, the AMT group showed significant (p < 0.05) reductions in all scores from 6 months after surgery until the end of the study. Both AMT and control groups showed significant intragroup differences in all scores, since the first month after surgery until the end of the study in comparison with the baseline scores. Taken together, these results indicate that CTRS in conjunction with AMT is more effective than CTRS alone in patients with CTS at 1-year follow-up. Clinical Trial: NCT04075357; Amniotic Membrane in Carpal Tunnel Syndrome.


Subject(s)
Amnion/transplantation , Carpal Tunnel Syndrome/surgery , Surveys and Questionnaires , Adult , Aged , Allografts , Female , Follow-Up Studies , Humans , Male , Middle Aged
13.
J Immunol Methods ; 476: 112677, 2020 01.
Article in English | MEDLINE | ID: mdl-31626758

ABSTRACT

Uveitis is an inflammatory disease associated with diverse systemic and autoimmune diseases, defined as the inflammation of any given segment of the uveal tract, uveitis contributes with 5-20% cases of blindness in the USA/Europe and >25% of cases in third-world countries. To understand its pathogenic mechanisms, BALB/c and C57BL/6 mice were induced to develop the condition by a single intraperitoneal injection of E. coli lipopolysaccharide, the aim of the present work is to determine leukocyte infiltration in an endotoxin-induced uveitis (EIU) in two non-related mouse strains. Histopathological findings and clinical analysis were conducted 24 and 48 h postinjection. Both strains presented conventional clinical signs of uveitis 24 h post LPS injection and the highest inflammatory leukocyte infiltration in the uveal tract was found in the BALB/c mouse strain. This article will give an insight on the difference of the inflammatory response in the EIU model in two different mouse strains and the relationship between the pathologic response.


Subject(s)
Disease Models, Animal , Mice, Inbred BALB C , Mice, Inbred C57BL , Uveitis/pathology , Animals , Inflammation/pathology , Lipopolysaccharides , Male , Mice , Species Specificity , Uveitis/chemically induced
14.
Stem Cells Transl Med ; 7(12): 906-917, 2018 12.
Article in English | MEDLINE | ID: mdl-30260581

ABSTRACT

Acute ocular chemical burns are ophthalmic emergencies requiring immediate diagnosis and treatment as they may lead to permanent impairment of vision. The clinical manifestations of such burns are produced by exacerbated innate immune response via the infiltration of inflammatory cells and activation of stromal fibroblasts. New therapies are emerging that are dedicated to repair mechanisms that improve the ocular surface after damage; for example, transplantation of stem cells (SC) has been successfully reported for this purpose. The pursuit of easily accessible, noninvasive procedures to obtain SC has led researchers to focus on human tissues such as amniotic membrane. Human amniotic mesenchymal SC (hAM-MSC) inhibits proinflammatory and fibrotic processes in different diseases. hAM-MSC expresses low levels of classical MHC-I and they do not express MHC-II, making them suitable for regenerative medicine. The aim of this study was to evaluate the effect of intracameral injection of hAM-MSC on the clinical manifestations, the infiltration of inflammatory cells, and the activation of stromal fibroblasts in a corneal alkali-burn model. We also determined the in vitro effect of hAM-MSC conditioned medium (CM) on α-SMA+ human limbal myofibroblast (HLM) frequency and on release of neutrophil extracellular traps (NETs). Our results show that intracameral hAM-MSC injection reduces neovascularization, opacity, stromal inflammatory cell infiltrate, and stromal α-SMA+ cells in our model. Moreover, in in vitro assays, CM from hAM-MSC decreased the quantity of α-SMA+ HLM and the release of NETs. These results suggest that intracameral hAM-MSC injection induces an anti-inflammatory and anti-fibrotic environment that promotes corneal wound healing. Stem Cells Translational Medicine 2018;7:906-917.


Subject(s)
Burns, Chemical/therapy , Corneal Diseases/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Amnion/cytology , Animals , Burns, Chemical/pathology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cornea/diagnostic imaging , Cornea/pathology , Cornea/physiology , Corneal Diseases/pathology , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/pharmacology , Disease Models, Animal , Humans , Intraocular Pressure , Mesenchymal Stem Cells/cytology , Microscopy, Fluorescence , Myofibroblasts/cytology , Myofibroblasts/metabolism , Neutrophils/cytology , Neutrophils/drug effects , Neutrophils/metabolism , Rabbits , Tomography, Optical Coherence
15.
Sci Rep ; 7(1): 12426, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28963485

ABSTRACT

The mesenchymal stem cells obtained from human amniotic membrane (hAMSC) possess immunosuppressive functions through soluble factors such as prostanoids and proteins; thus, they have been proposed to ameliorate inflammatory processes. On the other hand, activated neutrophils are cells of the first line of immune defense that are able to release extracellular traps (NETs). NETs are formed of DNA and granular components; however, the excessive release of NETs is associated with the development of autoimmune and chronic inflammatory diseases. In this study, we identified that conditioned medium (CM) from hAMSC was able to diminish NETs release, as well as the production of reactive oxygen species (ROS) and the mitochondrial membrane potential from LPS-stimulated mouse bone marrow-derived neutrophils (BMN). Interestingly, NETs inhibition, ROS levels decrease and mitochondrial membrane potential loss were reverted when LPS-stimulated murine derived BMN were exposed to the CM from hAMSC transfected with TSG-6-siRNA. Finally, rhTSG6 was able to significantly diminish NETs release in BMN. These data suggest an inhibition mechanism of NETs ROS-dependent in which TSG-6 participates. Consequently, we propose the hAMSC use as a therapeutic candidate in the treatment of inflammatory diseases in which NETs are involved.


Subject(s)
Amnion/cytology , Bone Marrow Cells , Cell Adhesion Molecules/physiology , Extracellular Traps/metabolism , Membrane Potential, Mitochondrial , Mesenchymal Stem Cells/metabolism , Neutrophils , Reactive Oxygen Species/metabolism , Adolescent , Adult , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cells, Cultured , Female , Humans , Mice , Neutrophils/cytology , Neutrophils/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...